Paper accepted in Autonomous Robots

Our paper entitled “Multi-objective drone path planning for search and rescue with quality-of-service requirements” is accepted for publication in Autonomous Robots.

In this paper, we incorporate communication into the multi-UAV path planning problem for search and rescue missions to enable dynamic task allocation via information dissemination. The mission tasks are defined as: search, inform, and monitor at the best possible link quality. Proposed strategies utilize information as soon as it becomes available to determine UAV tasks and can be tuned to prioritize certain tasks in relation to others. We illustrate that more tasks can be performed in the given mission time by efficient incorporation of communication in the path design.

Paper accepted in Autonomous Robots

Our paper entitled “Live multicast video streaming from drones: an experimental study” is accepted for publication in Autonomous Robots.

In this paper, we present and evaluate a multicast framework for point-to-multipoint and multipoint-to-point-to-multipoint video streaming. We evaluate the proposed application-layer rate-adaptive multicast video streaming over an aerial ad-hoc network that uses IEEE 802.11 in terms of goodput, delay, and packet loss.

Panel in IEEE WCNC 2019 on Drone Networks

Mr. Emini (T-Mobile Austria), Dr. Jeroen Wigard (Nokia Bell Labs), Dr. Challita (Ericsson) and myelf were panelists in IEEE WCNC 2019. The panel entitled ” Drone Networking: Technical Challenges and Business Opportunities” was organized by Dr. Fakhreddine and Dr. Bettstetter. We had a fruitful discussion on many topics including technical challenges inherent to the use of cellular-connected UAVs, regulatory aspects and security challenges in UAV networking, 5G and UAV networking, and the expected status of UAV networking for the next 5/10 years. IMG-20190417-WA0002

Paper accepted in Elsevier Ad Hoc Networks Journal

Our paper entitled “Drone Networks: Communications, Coordination, and Sensing” is accepted for publication in Ad Hoc Networks Journal.

In this paper, we describe a high-level architecture for the design of a collaborative aerial system consisting of drones with on-board sensors and embedded processing, sensing, coordination, and communication and networking capabilities. We implement a multi-drone system consisting of quadcopters and demonstrate its potential in disaster assistance and area monitoring scenarios. Furthermore, we illustrate design challenges and present potential solutions based on the lessons learned so far.

Supporting First Response Personnel with Autonomous Drones

Our research at Klagenfurt focuses on many civil applications of drones. The following video illustrates the functionalities we can enable on quadrotor platforms tailored for disaster response. Specifically, we show multi-drone coordination supporting aerial surveillance, target detection, video streaming, delivery, navigation under forest canopy and human-drone interaction.

Paper accepted in IEEE ICRA 2014

Our paper “Information Merging in Multi-UAV Cooperative Search,” is accepted in IEEE International Conference on Robotics and Automation 2014.

The paper investigates probabilistic information merging strategies for cooperative search using multiple UAVs. The objective is to determine the impact of cooperation and type/amount of information exchange on search time and detection errors. Local occupancy grids are used to represent target existence, to update its belief with local observations and to merge information from other UAVs. Our merging strategies perform Bayes updates of the occupancy probabilities while considering realistic limitations in
sensing, communication and UAV movement—all of which are important for small-scale UAVs.

Successful experiments with multiple quadrotors

We have demonstrated a multi-UAV coverage scenario with three quadrotors working together to make an overview image of a large area. The vehicles were equipped with cameras and they followed pre-computed flight paths, taking high-quality pictures at certain points. The collected images were immediately transmitted to a ground station, where the mission progress could be readily overseen and changed if necessary.

Check out our multi-UAV system in action! The video was nominated for Best Student Video in AAAI (http://www.aaaivideos.org/2013/) and was awarded second place.